Translocation of a UV-damaged DNA binding protein into a tight association with chromatin after treatment of mammalian cells with UV light.
نویسندگان
چکیده
A UV-damaged DNA binding protein (UV-DDB) is the major source of UV-damaged DNA binding activity in mammalian cell extracts. This activity is defective in at least some xeroderma pigmentosum group E (XP-E) patients; microinjection of the UV-DDB protein into their fibroblasts corrects nucleotide excision repair (NER). In an in vitro reconstituted NER system, small amounts of UV-DDB stimulate repair synthesis a few fold. After exposure to UV, mammalian cells show an early dose-dependent inhibition of the extractable UV-DDB activity; this inhibition may reflect a tight association of the binding protein with UV-damaged genomic DNA. To investigate the dynamics and location of UV-DDB with respect to damaged chromatin in vivo, we utilized nuclear fractionation and specific antibodies and detected translocation of the p127 component of UV-DDB from a loose to a tight association with chromatinized DNA immediately after UV treatment. A similar redistribution was found for other NER proteins, i.e. XPA, RP-A and PCNA, suggesting their tighter association with genomic DNA after UV. These studies revealed a specific protein-protein interaction between UV-DDB/p127 and RP-A that appears to enhance binding of both proteins to UV-damaged DNA in vitro, providing evidence for the involvement of UV-DDB in the damage-recognition step of NER. Moreover, the kinetics of the reappearance of extractable UV-DDB activity after UV treatment of human cells with differing repair capacities positively correlate with the cell's capacity to repair 6-4 pyrimidine dimers (6-4 PD) in the whole genome, a result consistent with an in vivo role for UV-DDB in recognizing this type of UV lesion.
منابع مشابه
UV radiation-induced XPC translocation within chromatin is mediated by damaged-DNA binding protein, DDB2.
The tumor suppressor p53 protein has been established as an important factor in modulating the efficiency of global genomic repair. Our recent repair studies in human cells reported that p53 regulates the recruitment of XPC and TFIIH proteins to specific DNA damage sites. Here, we have examined the influence of p53 and damaged-DNA binding complex (DDB2) proteins on the distribution of XPC withi...
متن کاملSequential binding of UV DNA damage binding factor and degradation of the p48 subunit as early events after UV irradiation.
The UV-damaged DNA binding protein complex (UV-DDB) is implicated in global genomic nucleotide excision repair (NER) in mammalian cells. The complex consists of a heterodimer of p127 and p48. UV-DDB is defective in one complementation group (XP-E) of the heritable, skin cancer-prone disorder xeroderma pigmentosum. Upon UV irradiation of primate cells, UV-DDB associates tightly with chromatin, c...
متن کاملجداسازی پروتئین LMG از بافت کبد موش و میانکنش آن با
ABSTRACT In eukaryote cells, DNA is complexed with a series of basic proteins making units of chromatin structure named nucleosomes. In addition, nonhistone proteins with different function are the components of chromatin. Among these proteins, a group with a low mobility on gel electrophoresis have been identified and named LMG. In this study a LMG protein with a molecular weigh of 160 ...
متن کاملDamaged DNA induced UV-damaged DNA-binding protein (UV-DDB) dimerization and its roles in chromatinized DNA repair.
UV light-induced photoproducts are recognized and removed by the nucleotide-excision repair (NER) pathway. In humans, the UV-damaged DNA-binding protein (UV-DDB) is part of a ubiquitin E3 ligase complex (DDB1-CUL4A(DDB2)) that initiates NER by recognizing damaged chromatin with concomitant ubiquitination of core histones at the lesion. We report the X-ray crystal structure of the human UV-DDB i...
متن کاملCullin 4A Ubiquitin Ligase Activity in Nucleotide Excision Repair through DDB2 DNA-binding DNA Damage Binding Protein Component DDB1 Participates
Functional defect in DNA damage binding (DDB) activity has a direct relationship to decreased nucleotide excision repair (NER) and increased susceptibility to cancer. DDB forms a complex with cullin 4A (Cul4A), which is now known to ubiquitylate DDB2, XPC, and histone H2A. However, the exact role of DDB1 in NER is unclear. In this study, we show that DDB1 knockdown in human cells impaired their...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cell science
دوره 110 ( Pt 10) شماره
صفحات -
تاریخ انتشار 1997